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Abstract. China’s fossil-fuel CO2 emissions (FFCO2) account for 28% of the global total FFCO2 in 2016. An accurate 

estimate of China’s FFCO2 is a prerequisite for global and regional carbon budget analyses and monitoring of carbon 

emission reduction efforts. However, large uncertainties and discrepancies exist in China’s FFCO2 estimations due to lack of 

detailed traceable emission factors and multiple statistical data sources. Here, we evaluated China's FFCO2 emissions from 9 

published global and regional emission datasets. These datasets show that the total emission increased from 3.4 (3.0-3.7) in 35 

2000 to 9.8 (9.2-10.4) Gt CO2 yr
-1

 in 2016. The variations in their estimates were due largely to the different emission factors 

(0.491-0.746 for coal) and activity data. The large-scale patterns of gridded emissions showed a reasonable agreement with 

high emissions concentrated in major city clusters, and the standard deviation mostly ranged 10-40% at provincial level. 

However, patterns beyond the provincial scale vary greatly with the top 5% of grid-level account for 50-90% of total 
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emissions for these datasets. Our findings highlight the significance of using locally-measured EF for the Chinese coals. To 40 

reduce the uncertainty, we call on the enhancement of physical CO2 measurements and use them for datasets validation, key 

input data sharing (e.g. point sources) and finer resolution validations at various levels. 

Keywords: fossil-fuel CO2 emissions, spatial disaggregation, emission factor, activity data, comprehensive dataset 

1 Introduction 

Anthropogenic emission of carbon dioxide (CO2) is one of the major contributions in accelerating global warming (IPCC, 45 

2007). The global CO2 emissions from fossil fuel combustion and industry processes increased to 36.23 Gt CO2 yr
-1

 in 2016, 

with a mean growth rate of 0.62 Gt CO2 yr
-1

 per year over the last decade (Le Quéré, 2018). In 2006, China became the 

world largest emitter of CO2 (Jones, 2007). The CO2 emission from fossil fuel combustion and cement production of China 

was 9.9 Gt CO2 in 2016, accounting for 28% of all global fossil-fuel based CO2 emissions (Le Quéré, 2018). To avoid the 

potential adverse effects from climate change (Zeng et al., 2008;Qin et al., 2016), the Chinese government has pledged to 50 

peak its CO2 emissions by 2030 or earlier and to reduce the CO2 emission per unit gross domestic product (GDP) by 60-65% 

below 2005 levels (SCIO, 2015). Thus, an accurate quantification of China’s CO2 emissions is the first step in understanding 

its carbon budget and making carbon control policy. 

Chinese emission estimates are thought to be uncertain or biased due to the lack of reliable statistical data and/or the use of 

generic emission factors (EF) (e.g. (Guan et al., 2012); (Liu et al., 2015)). Global gridded emission datasets are often based 55 

on disaggregation of country scale emissions (Janssens-Maenhout, 2017;Wang, 2013). Thus, the gridded emissions are 

subjected to errors and uncertainties from the total emission calculation and emission spatial disaggregation (Andres et al., 

2016;Oda, 2018;Oda, 2011). For example, the Carbon Dioxide Information Analysis Center (CDIAC) distributes national 

energy statistics at a resolution of 1°×1° using population density as a proxy (Andres et al., 2016;Andres et al., 2011). 

Further, to improve spatial resolution of emission inventory, the Open-Data Inventory for Anthropogenic Carbon dioxide 60 

(ODIAC) distributes national emissions based on CDIAC and BP statistics with satellite nighttime lights and power plant 

emissions (Oda, 2018;Oda, 2011). The Emissions Database for Global Atmospheric Research (EDGAR) derived emissions 

from the energy balance statistics of the International Energy Agency (IEA), and country specific activity datasets from BP 

plc, United States Geological Survey (USGS), World Steel Association, Global Gas Flaring Reduction Partnership 

(GGFR)/U.S. National Oceanic and Atmospheric Administration (NOAA) and International Fertilizer Association (IFA). 65 

Gridded emission maps at 0.1x0.1 degree were produced using spatial proxy data based on the population density, traffic 

networks, nighttime lights and point sources as described in Janssens-Maenhout (2017). Based on the sub-national fuel data, 

population and other geographically resolved data, a high-resolution inventory of global CO2 emissions was developed at 

Peking University (PKU-CO2, hereafter named as PKU) (Wang, 2013). The existing estimates of global total FFCO2 

emissions are comparable in magnitude (Janssens-Maenhout, 2017), with an uncertainty generally within ±10% (Andres et 70 

al., 2012;Le Quéré, 2018). However, there are great differences at national scale (Olivier, 2014;Marland et al., 2010), with 
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the uncertainty ranging from a few percent to more than 50% in estimated emissions for individual countries (Andres et al., 

2012;Oda, 2018;Boden, 2016). 

In order to accurately calculate emissions, a series of efforts have been conducted to quantitatively evaluate China’s CO2 

emissions using national or provincial activity data, local EF, and detailed data set of point sources (Cai et al., 2018;Li, 75 

2017;Wang, 2013). The China High Resolution Emission Database (CHRED) was developed by Cai et al. (2018) and Wang 

et al. (2014) based on the provincial statistics, traffic network, point sources and industrial and fuel-specific EF. CHRED was 

featured by its exclusive point source data for 1.58 million industrial enterprises from the First China Pollution Source 

Census. The Mutli-resolution Emission Inventory for China (MEIC) was developed by Zhang et al. (2007), Zhang et al. 

(2011) and Liu (2015) at Tsinghua University through integrating provincial statistics, unit-based power plant emissions, 80 

population density, traffic networks, and EF (Li, 2017;Zheng et al., 2018;Zheng, 2018). MEIC used China Power Emissions 

Database (CPED), and the unit-based approach is used to calculate emissions for each coal-fired power plant in China with 

detailed unit-level information (e.g., coal use, geographical coordinates). For the mobile sources, a high-resolution mapping 

approach is adopted to constrain the vehicle emissions using county-level activity database. The China Emission Accounts 

and Datasets (CEADs) was constructed by (Shan et al., 2018;Shan et al., 2016) and Guan et al. (2018) based on different 85 

levels of inventories to provide emissions at national and provincial scales. CEADs used coal EFs from the large-sample 

measurements (602 coal samples and samples from 4,243 coal mines). And this is assumed to be more accurate than the 

IPCC default EFs. 

Regardless of these efforts, however, the amount of China’s CO2 emissions remains uncertain due to the large discrepancy 

among current estimates, of which the difference ranges from 8-24% (Shan et al., 2018;Shan et al., 2016). Several studies 90 

made efforts of quantifying the possible uncertainty in China’s FFCO2, such as differences from estimation approaches 

(Berezin, 2013), energy statistics (Hong, 2017), spatial scales (Wang and Cai, 2017), and point source data (Liu, 2015). 

Importantly, the authors would like to point out that the lack of a comprehensive understanding of the potential uncertainty 

in estimates of China’s FFCO2, including spatial, temporal, proxy, and magnitude components as one of the root causes of 

the uncertainty.  95 

Here we evaluated the uncertainty in China’s FFCO2 estimates by synthesizing global gridded emissions datasets (ODIAC, 

EDGAR, and PKU) and China-specific emission maps (CHRED, MEIC, and the Nanjing University CO2 (NJU) emission 

inventory). Moreover, several other inventories were used in the evaluation analysis, such as the Global Carbon Budget from 

the Global Carbon Project (GCP), the National Communication on Climate Change of China (NCCC), the U.S. Energy 

Information Administration (EIA), IEA and BP.  100 

The purposes of this study were to: 1) quantify the magnitude and the uncertainty in China’s FFCO2 estimates using the 

spread of values from the state-of-the-art inventories; 2) identify the spatiotemporal differences of China’s FFCO2 emissions 

between the existing emission inventories and explore the underlying reasons for such differences. To our knowledge, this is 

the first comprehensive evaluation of the most up-to-date and mostly publicly available carbon emission inventories for 

China. 105 
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2 Emissions data 

The evaluation analysis was conducted from 6 gridded datasets (listed in Table 1) and 3 other statistical data. Specifically, 

the global fossil fuel CO2 emission datasets included the year 2017 version of ODIAC (ODIAC2017), the version v4.3.2 of 

EDGAR (EDGARv4.3.2), PKU-CO2, which all used CARMA as point source. The China-specific emission data used were 

the year 2007 of CHRED, the MEIC v1.3, NJU-CO2 v2017, which all used China Energy Statistical Yearbook (CESY) 110 

activity data. Moreover, 3 inventories were used as a reference, i.e., GCP/CDIAC, CEADs and NCCC. Data were collected 

from official websites for ODIAC, EDGAR, PKU and 6 tabular statistic data, and were acquired from their authors for 

CHRED, MEIC and NJU. See supporting information for more details on data sources and methodology of each dataset. 

3 Methodology for evaluation of multiple datasets 

We evaluated these datasets from three aspects: data sources, boundary (emission sectors) and methodology (Figure 1). For 115 

data source, there are two levels: national data such as UN statistics and provincial level data such as CESY. The emission 

sectors mainly include fossil fuel production, industry production and processes, households, transportation, 

aviation/shipping, agriculture, biomass burning and waste for these datasets. And for methodology, it includes total estimates 

(activity data and EF) aspect and spatial disaggregation of point, line and area sources. 
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 120 

 Figure 1. Conceptual diagram for data evaluation based on data sources, emission sectors and methodologies.   

 

Preprocessing of six gridded CO2 emission datasets included several steps that are described as follows. First, The global 

map of CO2 emissions (i.e. ODIAC, EDGAR and PKU) were re-projected to Albers Conical Equal Area projection (that of 

CHRED). And the nearest neighbour algorithm was used to resample different spatial resolution into a pixel size of 10 km 125 

by 10 km. Second, the national total emissions were derived using ArcGIS zonal statistics tool for CHRED while the others 

were from tabular data provided by data owners. Finally, the grids for each inventory were sorted in ascending order and 

then plotted on a logarithmic scale to represent the distribution of emissions. To identify the contribution of high emission 

grids, emissions at grid level that exceeded 50 kt CO2 yr
-1

 km
-2

 and the top 5 % emitting grids were selected for analysis. 
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4 Results 135 

4.1 Total emissions and recent trends 

The interannual variations of China’s CO2 emissions from 2000 to 2016 were evaluated from 6 gridded emission maps and 3 

national total inventories  (Figure 2). All datasets show a significant increasing trend in the period of 2000 to 2013 from 3.4 

to 9.9 Gt CO2. The range of the 9 estimates increased simultaneously from 0.7 to 2.1 Gt CO2 (both are 21%). In the second 

period (from 2013 to 2016), the temporal variations mostly levelled off or even decreased. Specifically, the emissions 140 

estimated from PKU and CEADs showed a slight downward trend although they used independent activity data of IEA 

(2014) and Statistics (2016), and this downward trend is attributed to changes in industrial structure, improved combustion 

efficiency, emissions control and slowing economic growth (Guan et al., 2018;Zheng, 2018). 

There is a large discrepancy among the current estimates, ranging from 8.0 to 10.7 Gt CO2 in 2012. NJU has the highest 

emissions during the periods of 2005—2015, followed by EDGAR, MEIC and CDIAC/GCP/ODIAC, while CEADs 145 

(National) and PKU were much lower (Figure 2). This is mainly because of three reasons: 1) the EF for raw coal was higher 

for EDGAR and ODIAC than the others; 2) differences in activity data, NJU, MEIC and CEADs (Provincial) used provincial 

data from CESY (2016), while CEADs (National), PKU used national data from CESY (2016) and IEA (2014), respectively 

(Table 1 and S1), and sum of provincial emissions would be higher than the national total; 3) differences in emission 

definitions (Table 1 and S1). EDGAR and MEIC have a similar trend, but for magnitude, MEIC is usually higher than 150 

EDGAR. This is a combined effect of the above three reasons. MEIC used provincial energy data CESY (2016) while 

EDGAR used national level IEA (2014). But MEIC’s EF is lower than EDGAR. These opposing effects would bring them 

closer in magnitude. CEADs (National) showed the lowest estimates from 2000—2007 and PKU afterwards. The gridded 

products (ODIAC, EDGAR, MEIC and NJU) and national inventory (GCP/CDIAC) both show minor differences in 

magnitude and trend from 2000—2007, and the differences increased gradually from 2008 onward. 155 
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Figure 2. China’s total FFCO2 emissions from 2000 to 2016. The emissions are from combustion of fossil fuels and cement production 

from different sources (EDGARv4.3.2_FT2016 includes international aviation and marine bunkers emissions). To keep comparability and 

avoid differences resulted from the emissions disaggregation (e.g. Oda et al. (2018)), the tabular data for 6 gridded emission inventories 

are used, which are provided by data developers before spatial disaggregation. Prior to 2014, GCP data was taken from CDIAC and 2015-160 
2016 was calculated based on BP data and fraction of cement production emissions in 2014. Shading area (error bar for CHRED) indicates 

uncertainties from coauthors’ previous studies (See Table 1). 

4.2 Spatial distribution of FFCO2 emissions 

The evaluation of spatially-explicit FFCO2 emissions is fundamentally limited by the lack of direct physical measurements 

on grid scales (e.g. (Oda, 2018)). We thus attempted to characterize the spatial patterns of China’s carbon emissions by 165 

presenting emission estimates available. We compared 6 gridded products including ODIAC, EDGAR, PKU, CHRED, 

MEIC and NJU in 2012. The year 2012 was the most recent year for which all the six datasets were available. Spatially, CO2 

emissions from different datasets are concentrated in eastern China (Figure 3). High emission areas were mostly distributed 

in city clusters (e.g. Beijing-Tianjin-Hebei (Jing-Jin-Ji), the Yangtze River Delta, and the Pearl River Delta) and densely 

populated areas (e.g. the North China Plain, the Northeast China Plain and Sichuan Basin). These major spatial patterns are 170 

primarily due to the use of spatial proxy data, and also in accordance with previous studies (Guan et al., 2018;Shan et al., 

2018). However, there were notable differences among different estimates at finer spatial scales. The large carbon emission 
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regions were found in the North China Plain and the Northeast China Plain for ODIAC (Figure 3a), PKU (Figure 3c), MEIC 

(Figure 3e) and NJU (Figure 3f), which ranged from 1000 to 5000 t CO2/km2.  However, the high emissions located in the 

Sichuan Basin were found from PKU, MEIC and NJU, but not from ODIAC. This discrepancy in identifying the large CO2 175 

emissions was probably due to the emissions from rural settlements with high population densities (e.g. Sichuan Basin), did 

not appear strongly in satellite nighttime lights and ODIAC map (Wang, 2013). The more diffusive distribution for MEIC 

and NJU could be attributed to the point sources abundance, with or without line sources and area sources proxies. Besides, 

EDGAR, PKU, CHRED, MEIC and NJU all showed relatively low emissions in western China, but the emission from 

ODIAC was zero due to no nighttime light there, which tended to distribute more emissions towards strong nightlights urban 180 

regions (Wang, 2013).  

EDGAR, CHRED and MEIC all showed the traffic line source emissions by inducing traffic networks in spatial 

disaggregation. The line emissions (such as expressway, arterial highway) depicted a more detailed spatial distribution in 

CHRED than EDGAR and MEIC. This discrepancy could be attributed to the different road networks and corresponding 

weighting factors they used. CHRED disaggregated emissions from the transport sector based on traffic networks and traffic 185 

flows (Cai et al., 2018). MEIC applied the traffic network from the China Digital Road-network Map (CDRM) (Zheng, 

2017), and EDGAR traffic networks were obtained from the OpenStreetMap and OpenRailwayMap (Geofabrik, 2015). 

ODIAC was lack of line source emissions, which would put more emissions towards populated areas than suburbs (Oda, 

2018). Oda and Maksyutov (2011) pointed out the possible utility of the street lights to represent line source spatial 

distributions even without the specific traffic spatial data. The spatial distributions of traffic emissions are highly uncertain 190 

with biases of 100% or more (Gately et al., 2015), which is due largely to mismatches between downscaling proxies and the 

actual vehicle activity distribution. 
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Figure 3. Spatial distributions of ODIAC (a), EDGAR (b), PKU (c), CHRED (d), MEIC (e) and NJU (f) at 10 km resolution for 2012. 

ODIAC was aggregated from 1 km data, MEIC, PKU, and EDGAR was resampled from 0.25, 0.1 and 0.1 degree, CHRED was scaled 195 
from 2007 data using 2012 total emission. 

4.3 Statistics of CO2 emissions at grid level 

To further characterize the spatial pattern of China’s CO2 emissions, the probability density function (PDF), cumulative 

emissions, and top 5% emitting grids were analyzed to identify the spatial differences from the distribution of grid cell 

emissions (Figure 4). As illustrated in Figure 4a, ODIAC showed a large number of cells with zero emissions (62%) (Figure 200 

4a). While low emissions cells (1 ~ 500 t CO2/km2) were mainly located in EDGAR and CHRED (Figure 4b and d). This 

could have a notable impact on cumulative national total emissions. The frequency distribution of high emission grids 

revealed the different point source data. MEIC showed the largest number of high-emitting cells (500~500000 t CO2/km2, 5% 

compared with others 2-3%, Figure 4e) by using a high-resolution emission database (CPED) including more power plant 

information (Li, 2017;Liu, 2015). Furthermore, ODIAC and EDGAR showed a good agreement in high emissions (> 100000 205 

t CO2/km2), because their point source emissions were both from CARMA database (Table 1). 

As depicted by the cumulative emissions plot (Figure 4g), PKU and NJU showed very similar cumulative curves, and so did 

EDGAR and CHRED. Moreover, the total emissions for EDGAR and CHRED were largely determined by a small 

proportion of high emitting grids with a steep increase at the last stage of cumulative curves (Figure 4g), and the top 5% 

emitting grids accounted for ~90% of the total emissions (Figure 4e), higher than those of 82%, 71%, 58% and 51% in 210 

ODIAC, MEIC, NJU and PKU, respectively. The emissions from PKU, MEIC and NJU were relatively evenly distributed. 
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This could be due to CHRED was mainly derived from enterprise-level point sources (Cai et al., 2018). In contrast, the 

emissions of PKU showed the most even pattern, and the emissions from top 5% emitting grids only accounted for 51% 

(Figure 4g). This was because PKU had a special area source survey data for the Chinese rural areas from a 34,489-

household energy-mix survey and a 1,670-household fuel-weighing campaign (Tao et al., 2018). Similarly, MEIC and NJU 215 

exhibited a even distribution because of the same activity data from CESY, National Bureau of Statistics (Table 1). 

 

Figure 4. Frequency counts (a-f), cumulative emissions (g) (grids were sorted from low to high), and top 5% emitting grids plots (h) for 

ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 at 10 km resolution. 

To identify the locations of hotspots, the bubble plots (Figure S2) demonstrated the spatial distribution of high-emitting grid 220 

cells that were larger than 50 kt CO2/km2. CHRED, EDGAR and ODIAC showed a similar pattern, with high-emitting grids 

concentrated in city clusters (e.g. Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta) and the eastern coast 

(Figure S2). EDGAR and ODIAC both derived the power plant emissions from CARMA, but ODIAC was likely to put more 

emissions than EDGAR over urbanized regions with lights, especially in the North China Plain. The emissions of CPED and 

CARMA were similar in China with a minor difference of 2%, but the numbers of power plants had a large difference (2320 225 

vs. 945) (Liu, 2015). This implied that CARMA tended to allocate similar emissions to fewer plants than CPED. 
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4.4 CO2 emissions at provincial level 

The provincial level results showed more consistency than the grid level in spatial distribution. All products agree that 

eastern and southern provinces are high emitters (>400 Mt CO2/yr, Figure 5 and S3), and western provinces were low 

emitters (<200 Mt CO2/yr, Figure 5 and S3). The top 5 emitting provinces were Shandong, Jiangsu, Hebei, Henan, and Inner 230 

Mongolia with the amount ranging from 577 ± 48 Mt to 820 ± 102 Mt CO2 in 2012 (Figure 5). While provinces located in 

western area with low economic activity and population density showed low carbon emissions (<200 Mt CO2, Figure 5 and 

S3). There is a clear discrepancy in provincial-level emissions among different estimates, and the mean standard deviation 

(SD) for 31 provinces’ emissions was 62 Mt CO2 (or 20%) in 2012. A large SD (>100 Mt CO2) occurs in high emitting 

provinces, such as Shandong, Jiangsu, Inner Mongolia, Shanxi, Hebei, and Liaoning. For Shandong province, the inventories 235 

vary from 675-965 Mt CO2/yr, with a relative SD of 12% (Figure 5 and 6), and for other high emitting provinces the relative 

SD ranged 12% - 48%. This implied that there is still room to reduce uncertainty. 

Since estimates based on provincial energy statistics are assumed to be more accurate than those derived from disaggregation 

of national total using spatial proxies, we evaluated the provincial emissions of each inventory using the provincial-based 

inventory mean (CHRED, MEIC, and NJU) (Figure 6). The results showed that emissions derived from the provincial 240 

energy statistics are highly correlated, with R ranging from 0.98 to 0.99 and slope ranging 0.97 to 1.04. By contrast, the 

estimates for ODIAC, EDGAR, and PKU which used IEA national energy statistics, showed an obvious disparity, especially 

in the top 5 emitting provinces, suggesting the large impact of spatial disaggregated approaches in allocating total emissions. 
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Figure 5. Provincial mean total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012. Numbers under the green bar are 245 
provincial total CO2 emissions in Mt. 
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Figure 6. Scatter plots of provincial total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 with top 5 provinces 

highlighted, and the x axis is the mean of provincial-data-based products (CHRED, MEIC and NJU). 

5 Discussion 250 

5.1 Statistics of CO2 emissions at grid level 

Activity data source, data level and sectors determined the total emissions largely. It has been well-discussed that sum of 

provincial data is larger than the national total (Guan et al., 2012;Hong, 2017;Liu et al., 2015;Shan et al., 2018;Liu, 2013). 

CEADs (Provincial) is 8-18% higher than CEADs (National) after year 2008 (Figure 2). And thus province-based estimates 

(e.g. NJU and MEIC) are higher than CEADs (National). This could be attributed to the differences in national and 255 

provincial statistical systems and artificial factors. For example, the provincial statistics has data inconsistency and double 

counting problems (Zhang et al., 2007;Guan et al., 2012). One possible way to improve this is to use the provincial 

consumption fractions to rescale the national total consumptions when distributing emissions to grids. Hong (2017) found 

that the ratio of the maximum discrepancy to the mean value was 16% due to different versions of national and provincial 

data in CESY. Apart from such differences, one peak of FFCO2 emissions was identified by most dataset in 2013, which was 260 

due largely to the slowing economic growth (NBS, 1998–2017), changes in industrial structure (Mi et al., 2017;Guan et al., 

2018) and a decline in the share of coal used for energy (Qi et al., 2016), and strategies for reducing emissions could be 
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based on such uniformed trends, while making reduction policies for provinces needs the support of provincial-energy-based 

datasets instead of national-energy-based ones. 

Estimates with more sectors would usually be higher than those with fewer. For different emission sectors, EDGAR has 265 

international aviation and bunkers (Janssens-Maenhout, 2017) and NJU has wastes sector(Liu, 2013) (Table S1), and thus 

were higher than others. Moreover, for MEICv.1.3 downloaded from official website, it included biofuel combustion (which 

accounted for ~5.7% of the total), and the version used here was specially prepared to exclude biofuel to increase 

comparability. For another instance, CEADs industry processes only take account of cement production and was thus lower 

than those (e.g., NJU and EDGAR) with more processes (iron and steel, etc.) (Janssens-Maenhout, 2017;Shan et al., 270 

2018;Liu, 2013). For PKU dataset, it used IEA energy statistics with more detailed energy sub-types. The emission factors 

was based on more detailed energy sub-types with lower EFs, and other inventories used average of large groups (Table 1) 

and sum of more detailed sub-types might not equal to the total of large groups due to incomplete of the statistics, and these 

could be reasons for its lower estimate (Wang, 2013). A further comparison with IEA, EIA and BP estimates with only 

energy related emissions also confirm that estimates with more sectors would be higher than those with fewer (Figure S1). 275 

5.2 Emission factor effects on total emissions 

Carbon emissions are calculated from activity data and EF, and the uncertainty in estimates is typically reported as 5% - 10%, 

while the maximum difference in this study reached 33.8% (or 2.7 PgC) in 2012. One major reason for this difference is the 

EF used by these inventories (Table 1). The EF for raw coal ranged from 0.491 to 0.746. For example, CEADs used 0.499 tC 

per ton of coal based on large-sample measurements, while EDGAR used 0.713 from the default values recommended by 280 

IPCC (Janssens-Maenhout, 2017;Liu et al., 2015;Shan et al., 2018), and the differences are due largely to the low quality and 

high ash content of Chinese coal. The variability of lignite and coal quality is quite large. In Liu et al., (2015) the carbon 

content of lignite ranged from 11% to 51% with mean±SD of 28%±13 (n=61). Furthermore, another study showed that the 

uncertainty from EF (-16 – 24%) was much higher than that from activity data (-1 – 9%) (Shan et al., 2018). We 

recommended substituting IPCC default coal EF with the CEADs EF. Regarding the plant-level emissions from coal 285 

consumptions, the collection of their EFs measured at fields representing the quality and type of various coals are highly 

needed to calibrate the large point source emissions, and we call for inclusion of physical measurements for calibration and 

validation of existing datasets (Bai et al., 2007;Dai et al., 2012;Kittner et al., 2018;Yao et al., 2019). Different fuel types 

would contribute differently to emission factors, i.e., for the same net heating value, natural gas emitted lowest carbon 

dioxide (61.7 kg CO2/TJ energy), followed by oil (65.3 kg CO2/TJ energy) and coal (94.6 kg CO2/TJ energy), and one 290 

successful example for reducing air pollutants and CO2 was that the Chinese government initiated the “project of 

replacement of coal with natural gas and electricity in North China” in 2016 (Zheng, 2018). Moreover, the non-oxidation 

fraction of 8% used in Liu et al. (2015) (Liu et al., 2015) for coal was attributable to the differences comparing with a default 

non-oxidation fraction of 0% recommended by IPCC (2006) in EDGAR (Janssens-Maenhout, 2017). 
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5.3 Point sources in datasets and the effects on spatial distribution 295 

Point sources emissions account for a large proportion of total emissions (Hutchins, 2017). Power plants consumed about 

half of the total coal production in the past decade (Liu, 2015). Thus, the accuracy of point sources was extremely important 

for improving emission estimates. ODIAC, EDGAR, and PKU all distributed power plant emissions from CARMA dataset. 

However, the geolocation errors in China are relatively large, and only 45% of power plants were located in the same 

0.1×0.1° grid in CARMA v2.0 (Wang, 2013), because CARMA generally treats the city-center latitudes and longitudes as 300 

the approximate coordinates of the power plants (Wheeler and Ummel, 2008). 

Liu (2015) found that CARMA neglected about 1300 small power plants in China. Thus CARMA allocated similar 

emissions to a limited number of plants than CPED (Table S2, 720, 1706 and 2320 point sources for ODIAC, EDGAR and 

MEIC, respectively), and ODIAC had fewer point sources due to elimination of wrong geolocations. The high-emitting grids 

in CHRED were attributed to the 1.58 million industrial enterprises from FCPSC used as point sources (Jinnan et al., 2014). 305 

Following the CARMA example, we call on the open source of large point sources for datasets and Chinese scientists need 

to adjust the locations of point sources from CARMA. 

5.4 Effects of spatial disaggregation methods on spatial distribution 

Downscaling methods are widely used for its uniformity and simplicity because of the lack of detailed spatial data. 

Disaggregation methods used (e.g. nighttime light, population) by inventories strongly affect the spatial pattern. For example, 310 

ODIAC mainly use nighttime light from satellite to distribute emissions. Thus the hotspots concentrated more in strong 

nighttime light regions. However, using remote sensing data tended to underestimate industrial and transportation emissions 

(Ghosh et al., 2010). For instance, coal-fired power plants do not emit strong lights and may be far away from cities by 

transmission lines. Electricity generation and use are usually happened at different places, and stronger night-time light does 

not always mean higher CO2 emissions (Cai et al., 2018;Doll et al., 2000). Furthermore, night time lights would ignore some 315 

other main fossil fuel emissions such as household cooking with coal. The good correlation between night-time light and 

CO2 emissions is usually on a larger scale basis (national or continental) (Oda, 2010;Raupach et al., 2010), while this 

relationship would fail in populated or industrialized rural areas. 

Transport networks are also used in several inventories for spatial disaggregation. EDGAR and CHRED both showed clear 

transport emissions especially in western China. EDGAR used three road types and corresponding weighting factors to 320 

disaggregate line source emissions. CHRED used national traffic networks and their flows to distribute traffic emissions (Cai 

et al., 2018;Cai et al., 2012). It is easier to obtain the traffic networks but rather difficult to get the traffic flows and vehicle 

kilometers travelled (VKT) data, and thus the weighting factors method are much easier to apply. 

Population is widely used in spatial disaggregation (Andres et al., 2014;Andres et al., 2016;Janssens-Maenhout, 2017). The 

CDIAC emission maps originally used a static population data to distribute emissions and recently have changed to a 325 

temporally varying population proxy, which largely reduced the uncertainty. However, the unified algorithm for spatial 
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disaggregation such as population density approach has difficulties in depicting the uneven development of rural and urban 

areas, and it usually use interpolation for limited base years and does not truly vary across years at high spatial resolution 

(Andres et al., 2014). Furthermore, downscaling approaches may introduce approximately 50% error per pixel, which are 

spatially correlated (Rayner et al., 2010), and this problem needs to be considered in future studies. 330 

Moreover, big cities virtually eliminated use of coal (Guan et al., 2018;Zheng, 2018), while in rural areas use of coal even 

increased (Meng et al., 2019). For example, a national survey showed that China’s rural residential coal consumption 

fractions for heating increased from 19.2% to 27.2% (Tao et al., 2018). These transitions has impacts on spatial distribution 

of both CO2 and air pollutants. And the high resolution CO2 emissions have a potential proxy for fossil fuel emissions (Wang, 

2013), thus further improvements on spatial disaggregation should consider these transitions and the surveyed data. 335 

 

Data availability. The data sets of ODIAC, EDGAR, PKU and CEADs are freely available from 

http://db.cger.nies.go.jp/dataset/ODIAC/, http://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG&SECURE=123,  

http://inventory.pku.edu.cn/download/download.html and http://www.ceads.net/  respectively. And CHRED, MEIC and NJU 

are available from data developers upon request. 340 
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